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Summary 

The integral yield of a reaction involving hot hydrogen atoms has been 
evaluated as a function of the initial energy of the hot atom. On the assump- 
tion that the cross section for the reaction is given by the excitation function 

&x(E) = Glmax E>Eo 

i&(E) = 0 E=GEo 

or another function of similar general form, expressions for the integral 
product yield were derived from the kinetic theory of hot reactions. 

Stochastic calculations, in which the thermal motion of the substrate 
was included, were also carried out. For the excitation functions considered, 
and for elastic collisions between the hydrogen atom and the substrate, the 
integral product yield is an approximately linear function of the initial 
energy of the hot atom over the range from 1.4 to 2.5 times the threshold 
energy. Simple extrapolation to zero of yields measured in this energy range 
would give an apparent threshold higher than the true value, and in general 
the true threshold is expected to be 90% + 10% of the apparent value 
obtained by extrapolation. 

1. Introduction 

Several reactions of hydrogen atoms, principally those involving the 
abstraction of deuterium from alkanes, have been studied by using atoms 
possessing excess translational energy (“hot” atoms) produced by photolysis 
of gaseous HBr or HI [l - 51. An advantage gained by using photochemically 
generated atoms rather than those produced by nuclear recoil is that the 
initial energy of the atoms is well defined. The threshold energy for a reac- 
tion is obtained by extrapolation to zero of the integral reaction yields 
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measured at a series of initial hydrogen atom energies [3 - 5]_ It has been 
pointed out [5] that simple extrapolation of yields at energies appreciably 
above the threshold usually leads to an apparent threshold energy signifi- 
cantly above- the true value,. and this observation is discussed more fully 
here. 

2. Relation of integral yields to the excitation function 

The excitation function for a reaction describes the relation between 
the reaction cross section and the relative translational energy of the reac- 
tants. The variation in the integral product yield with energy depends on the 
form of the excitation function, and in the following the energy dependence 
of integral yields is explored for particular excitation functions. In the func- 
tions considered, the reaction cross section rises from zero at the threshold 
with steadily decreasing slope to reach a maximum or limiting value at much 
higher energy, so that in the threshold region it can be represented by a 
function such as 1 - E,/E, (1 - E,/E)l” or 1 - (E,/E)2, where E, is the 
threshold. The possible existence of a small low energy “tail” as suggested 
for the H + H2 reaction [6] is ignored. Such a tail would not be detected 
experimentally from integral yield measurements of the type considered 
here. 

A convenient way of relating the integral yield to the excitation 
function is by the use -of the kinetic theory of Estrup and Wolfgang 
[7,81: 

-ln( 1 _p,=J?!$d& 

%l L 

Here P is the integral reaction yield, p(E,) is the probability of reaction in a 
single collision at laboratory energy EL of the hot atom, (11 is the average 
logarithmic energy loss of the hot atom in a non-reactive collision with the 
substrate and EL, is the threshold energy. This expression was originally 
developed for the yield of a reaction of atoms produced by nuclear recoil 
and in that case EL is the upper bound of energy at which reaction can 
occur; EL, is taken ‘here to be the initial energy of the hot atom. In the 
derivation of eqn. (1) thermal translational motion of the substrate is 
ignored. The assumptions and approximations involved in the kinetic theory 
have been discussed extensively [ 1, 9 - 151, In particular, the atom is 
assumed to make a number of collisions at energies above the upper limit 
EL, for reaction so as to provide a statistically well-defined distribution of 
energies in the range from EL, to EL,. Although this assumption cannot .be 
mad,e in photochemical systems, ‘where the first collision of the atom is 
within the reactive energy range, the theory still gives a reasonably good 
description of model photochemical systems, as can be seen in Fig. 2, which 
is discussed in more detail later. 
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3. Line-of-centres function 

A simple excitation function which is often used is the line-of-centres 
function [ 161 

S,(E) = SRmax E>Eo 

(2) 
S,(E) = 0 ES E. 

where S,(E) is the reaction cross section and SRmex is the value of S,(E) at 

very high energy. The function is expressed in terms of relative transitional 
energy E and the threshold E. is also in relative energy. In the symbolism 
of the kinetic theory, p(E) = S,(E)/S(E) where S(E) is the collision cross 
section, and (2) becomes 

Eo 
p(E)=p, 1-x ( 1 E>E, 

(3) 
P(E) = 0 EGE,, 

If thermal substrate motion is ignored, as in the derivation of eqn. (l), the 
laboratory energy of the hot atom and the relative energy are related by E = 
Efl,/(il& + MH) and E,, = EL,Ms/(Ms + MH), where MH and Ms are the 
masses of the hot atom and the sub&rat+, The integral yield *for. a reaction 
following the line-of-centres excitation function is then obtained from 
eqn. (1): 

--In{1 --P(E,JI = 

If a is assumed to 

EL, 
EL2 ) 

aL (4) 

be independent of energy, as would be %he case for elastic 
rigid sphere interaction between atom and substrate, then the integral yield 
varies with the initial energy EL1 of the atom according to 

--In{1 -P(EL,)) = 5 (5) 

For small values of P, -ln(l -P) is approximately equal to P. 
Figure 1 shows the integral product yield as a function of the initial 

laboratory energy of the hot atom, calculated from eqn. (.5) with p,/cy = 
0.082. The relationship between P and EL, shows pronoLliced upward 
curvature from the threshold to EL, /EL0 = 1.4, and is then almost linear in 
the range EL,/EL, = 1.5 - 3.0. 
,, In a typical experimental cas&, the apparent threshold might be 

obtained by using a linear or almost linear extrapolation of measured yields 
in the, range EL, /EL, = 1.4 - 2.5. $uch. a proceclure applied to the yield curve 
in Fig. 1 would lead to an. apparent threshold well above the true value. 
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Fig. 1. Integral product yield for reaction with line-of-centres excitation function calcu- 
lated from eqn. (5) with p&k = 0.082. 

Linear extrapolation of the points at EL,/&, = 1.4 and EL, /EL, = 2.6 gives 
an apparent threshold EL = 1.19ELo. 

4. Other excitation functions 

The functions 

E>E, 

S&E) = 0 

and 

EGEo 

E> E,, 

(7) 

discussed by Eu and Liu [ 17 J are qualitatively similar to the line-of-centres 
function. 

In both cases p(E,)/E, rises rapidly from zero at the threshold to 

reach a value which remains roughly constant .(within 20% of its maximum 
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value) in the range EL/EL, = 1.4 - 2.6, Reference to eqn. (1) shows that the 
yield curves are expected to be qualitatively similar to Fig. 1, with upward 
curvature immediately above the threshold followed by an extended almost 
linear region. Extrapolation of yields well above the threshold again would 
lead to an apparent threshold well above the true value. Application of the 
simple treatment given earlier to function (6) gives the yield curve 

(8) 

and the apparent threshold obtained by linear extrapolation of the yields at 
EL,/EL, = 1.4 and &/EL, = 2 .O is 16% above the true value. This illustrates 
the fact that the low energy tail on the yield curve is expected to be smaller, 
and the apparent threshold lower, for those functions for which P(&,)/E~ 
approaches its maximum value more rapidly above the threshold. 

By contrast with functions (2), (6) and (7), an excitation function 
having a constant or even increasing slope above the threshold, such as 
S,(E) a E - EO, might be considered. The yield curve for such a function 
displays upward curvature at all energies above the threshold. Linear extrap- 
olation of yields at energies well above the threshold would be inappropriate, 
but if carried out would lead to an apparent threshold well above the true 
value. 

5. Effect of variation of ar 

The derivation of (5) and (8) assumes that (x is constant over the 
relevant energy range, as would be the case for elastic hard sphere collisions. 
It is more realistic to assume that collisions are inelastic and that ar might 
increase with increasing energy. The qualitative effect of such a variation 
would be to reduce the values of P at energies well above the threshold 
relative to those at energies near the threshold, thus lowering the apparent 
threshold obtained by extrapolation. This was not extensively examined 
because of the lack of information about the energy dependence of a, but a 
few calculations were carried out using eqn. (1) with an energy-dependent (Y, 
and the apparent threshold was estimated by linear extrapolation through 
the points at E&,/EL, = 1.4 and &/EL, = 2.0. Both the line-of-centres 
function and a function proportional to 1 - (&,/E)3 were used in the calcu- 
lations. It was found that unless LX increased very sharply with energy (by 
more than 80% between EL, and 2.&J the apparent threshold still lay above 
the true threshold. 

6. Stochastic calculations of reaction fields 

The model used for the calculation of the yield curve in Fig. I is 
unrealistic in that it negelcts thermal motion of the substrate and assumes a 
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rigid sphere interaction between the collision partners, In order to investigate 
the effect of thermal motion of the substrate stochastic calculations of yields 
for different forms of the excitation function have been carried out. The 
calculations are limited to elastic collisions between the hydrogen atom and 
the substrate, but have been performed using a soft interaction potential 
(ninth power repulsive) as well as the rigid sphere interaction. The method 
used is outlined below. 

It is imagined that a hydrogen atom at an initial laboratory transla- 
tional energy EL, is injected into a thermal substrate medium. The hydrogen 
atom is then allowed to make successive collisions with the substrate until 
either it meets a criterion for reaction in one of the collisions or its energy 
falls below a predetermined threshold. If, in one of the collisions,- the 
reaction criterion is met the hydrogen atom is removed from the reaction 
system and the fact is recorded as a reaction and referenced to the particular 
initial energy of the hydrogen atom concerned. Another hydrogen atom is 
then injected. In practice many hydrogen atoms are introduced (500), their 
fates followed and at, the end of the run. the integral yield ET is calculated 
using 

number of atoms reacted 
JW,,.) = 

number of atoms injected 

The whole procedure is then repeated for a sufficient number of 
initial hydrogen atom energies to enable the yield curve over the photo- 
chemical energy range to be obtained. 

Whether reaction occurred in any particular collision was determined 
randomly using the probability of reaction at the relative collisional energy 
E given by the excitation function. ‘If reaction did not occur, the atom 
suffered a change in translational energy and a new value of the energy was 
calduiated. , 

For each collision, the laboratory energy E; of the hydrogen atom was 
transformed to an energy E relative to that of the substrate. This was 
achieved by a random selection of both the collision angle r and the labora- 
tory velocity Vs of the substrate from appropriately weighted distributions 
[l&19] and the calculation of E from EL, V, and y_ 

The probability p(E) of reaction in a single collision at the relative 
energy E was then calculated from 

S,(E) &tmax 
p(E) = - = - 

SW) SW) 
E > E, 

P(E) = 0 EiE, 
(9) 

This equation involves the reaction cross section S,(E), the total collision 
cross section S(E) and the maximum reaction cross section SR max _ 

Calculations were carried out both for the line-of-centres function (2) 
(z = 1) and for the Eu and Liu function (7) (z = l/2). In using eqn. (9) to 
calculate the single collision probability, the laboratory energy threshold 
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EL, was transformed to a relative energy threshold E0 by application of the 
mass factor. 

For the hard sphere interaction S(E) was taken as 0.32 nm*. For 
calculations involving the repulsive potential V(r) = df9, S(E) was arbitrarily 
defined so as to exclude collisions with energy loss of the hydrogen atom of 
less than 1% of the.maximum possible; this procedure led to a slow variation 
in S(E) with energy [ 4] : 

S(E) = ~b,nax= = ~~~rnax~ (101 

where b is the impact parameter and y. is a function of b and E which deter- 
mines the deflection angle x [ 201. The value of y. mBy used was 1.1 and the 
repulsive potential employed was that appropriate for II-Xe interaction [ 41, 
with d = 0.329 J mol-i nm9. 

If the value of p(E) was less than a number selected at random from a 
linearly weighted distribution between zero and unity, then this corre- 
sponded to no reaction. Alternatively, when the value of p(E) was greater 
than the value of the random number the reaction criterion was met. In this 
case, the hydrogen atom was removed from the substrate medium and the 
next hydrogen atom injected at the source energy. If, however, no reaction 
occurred, the laboratory energy of the hydrogen atom was changed from EL’ 
to EL” after collision. This new laboratory energy was calculated using [4] 

2E,’ -MS V,* + (MS - MH) (z)“*vs cos.j(l-cosX)+ 

Vs sin 7 cos 7 sin x (11) 

where q (azimuthal angle) and x (deflection angle) are the scattering angles, 
M = MS + MH and P is the reduced mass of the substrate and the hydrogen 
atom. 

h addition to Vs and 7, the azimuthal angle q and impact parameter 
b were selected randomly from suitable weighted distributions [ 19 J . For the 
rigid sphere potential x is determined by b and for the ninth power repulsive 
potential x is determined by yo, Le. by both b and E. 

The value of EL” was once again transformed to a relative energy, and 
the single collision reaction probability was calculated. The whole procedure 
was then repeated until the laboratory energy of the hydrogen atom fell 
below a predetermined threshold or the hydrogen atom was removed in 
reaction. In this way the fate of each of the injected hydrogen atoms was 
followed, the reactive events were recorded and the integral reaction yield 
for a particular source energy was calculated. The whole procedure was then 
repeated for several different values of the initial laboratory translational 
energy of the hydrogen atom. 
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7. Comparison with eqn. (5) 

In order to compare the results of the above procedure with those pre- 
dicted by the explicit function in eqn. (S), stochastic calculations were 
carried out for a rigid sphere interaction potential and a line-ofcentres 
excitation function. To keep the substrate stationary, fulfilling the condition 
for which eqn. (5) was derived, the temperature, which determines the dis- 
tribution of Vs, was set at 0 K. The substrate mass used was 0.018 kg mol-’ 
and the cross sections were Samax = 0.025 nm2 and S(E) = 0.32 nm2. The 
threshold energy chosen was EL, = 55 kJ mol- 1 and the integral yield was 
computed for several values of EL, between 65 and 195 kJ mol-‘. 

The quantities needed to calculate P from eqn. (5) were obtained from 
the masses and cross sections. pm = Samax /S(E) = 0.0781. For rigid spheres, 
LY = 1 + fi In p/(1 - fl), with fl= (A& - MH)2/{Ms + MH)2; hence QL = 0.108. 

Figure 2 shows both the stochastically calculated values of --In{1 -P) 
and the yield curve obtained from the explicit function (5). Some statistical 
fluctuations are evident, but there is excellent agreement between the two 
sets of results. In both cases the higher energy yields extrapolate to an 
energy well above the threshold of 55 kJ mol-I. 
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EL llNlTlAL1 f kJ mol-1 

Fig. 2. Dependence of integral product yield on initial laboratory energy for reaction with 
line-of-centres excitation function (rigid sphere potential; T = 0 K; SR- = 0.025 nm*; 
S(E) = 0.32 nm2; EL = 55 kJ molvl; MS = 0.018 kg mol-‘): 0, stochastic resuLta;-, 
calcul+,ted from eqn. P5). 

8. Calculations with thermal substrate motion 

For a substrate undergoing thermal motion there is a distribution of 
relative energies E corresponding to any particular laboratory energy EL of 
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the hydrogen atom. Subsequent calculations of integral yields were carried 
out with the substrate having a velocity distribution corresponding to a 
temperature of 293 K and calculated yields were used to examine the 
relationship between the true threshold and the apparent value obtained by 
extrapolation. As in the case of a stationary substrate, it was found that the 
apparent threshold lies above the true value, and the effects of changes in 
some of the quantities used in the calculation, the type of interaction poten- 
tial, the mass of the substrate, the form of the excitation function and the 
value of Samax were explored. In all cases the threshold used was EL, = 55 kJ 
mol-l. 

The effect of the substrate mass on the apparent threshold was 
examined by computing yields for a line-of-centres function with S,,,, = 
0.04 nm2, the ninth power repulsive interaction potential and substrate 
masses of 0.002, 0.018, 0.050 and 0.100 kg mol-I. It was found that 
increases in the substrate mass substantially increased the integral yields, as 
would be anticipated, since the average energy loss of a hydrogen atom in a 
collision is reduced by increasing the substrate mass. Despite this marked 
change in yields, the apparent extrapolated threshold was insensitive to the 
value of the substrate mass used in the calculations. The other factor which 
controls energy loss in a collision is the interaction potential between the 
hydrogen atom and the substrate, the energy loss being smaller for the ninth 
power repulsive potential than for the rigid sphere potential. Computed 
yields assuming the excitation function (7) were substantially higher when a 
ninth power repulsive potential was used than for a rigid sphere potential, 
but little change in the apparent threshold was evident. Thus for elastic colli- 
sions the apparent threshold is not strongly influenced by factors affecting 
the average energy Ioss in collision. By contrast, the form of the excitation 
function has an important effect on the position of the apparent threshold. 
This can be seen by reference to Fig. 3, which shows a comparison of 
computed integral yields for two reactions, one of which follows the line-of- 
centres function (2) and the other the steeper function (7). Apart from the 
difference in the form of the excitation function the conditions used in the 
calculation were the same in both cases; the value of SRmax was 0.008 nm2, 
the substrate mass was 0.018 kg mol- I, the ninth power repulsive potential 
was used and the temperature was 293 K. In both cases extrapolation of the 
yields well above the threshold gives an apparent threshold higher than the 
true value, but the apparent threshold obtained for function (7) is closer to 
the true value. 

The effect of an increase in S,,,, was examined by comparing yields 
for the function (7) with SRmax = 0.008 nm*, SRmax 7 0.025 nm* and 
S Rmax = 0.040 run”. As well as producing a substantial increase in yields, the 
increase in S,,,, from 0.008 to 0.040 nm2 resulted in a small lowering of 
the apparent threshold, from l.llE,, to about 1.08E0. 

The main factor affecting the apparent threshold is thus the form of 
the excitation function, with the value of S, max having a minor effect. On 
average, for several runs carried out under a variety of conditions, the 



Fig. 3. Integral yields for reactions (ninth power repulsive potential; MS = 0.018 kg 
mol-‘; T = 293 K; SRmax = 0.008 nm*): 0, following excitation function (7); 0, following 
excitation function (2). 

apparent threshold obtained by extrapolation is about 1 .2EL0 for the line-of- 
centres function (2) and about l.lE,* for the function (7). 

9. -Relation between apparent and true thresholds 

There is a broad agreement between calculations carried out using 
expressions based on the kinetic theory of hot reactions and those using 
stochastic methods. The calculations show that for an excitation ‘function of 
the general type (2), (6) or (7), and for energy transfer in elastic collisions 
between the hydrogen atom and the substrate, the integral reaction yield is 
an approximately linear function of the initial energy of the hydrogen atom 
over the range from EL, = 1.4 to EL, = 2.5EL0. Extrapolation of yields in this 
energy range to zero gives an apparent threshold energy above the true value. 
As a rough generalization, the true threshold is expected to be 90% f 10% of 
the apparent threshold. If the excitation function is steep, with &(E)/E 
approaching its maximum value rapidly, the apparent threshold is closer to 
the true value than if the excitation function is shallow. 

An example of the relationship between the true and apparent thres- 
holds is provided by the work of G-n et al. 1211 on the abstraction by hot 
hydrogen atoms of the secondary deuterium atoms in n-C&iO. The true 
threshold, estimated by a method based on the temperature variation of 
the HD yield, is 0.35 eV, whereas the apparent threshold, determined by 
extrapolation of integral reaction yields over the range from 0.48 to 0.92 eV, 
is about 0.38 eV. 
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